AD=A060 427 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 9/2

ONE=WAY BOUNDED CELLULAR ACCEPTORS.(U)
JUL 78 C R DYER AFOSR=T7=-3271
AFOSR=TR=TA=1414 NL

UNCLASSIFIED €SC=TR=680
lor | [
...l. 3

DATE
FILMED

[-79

||||| .0 &
= I

|T P
L L

N2 s e

o —— —

)

e~ (@) VAL

ADAQ060427

Y

- A=

FILE €O

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

et
- *

m

R

UNIVERSITY OF MARYLAND
| COLLEGE PARK, MARYLAND
20742

7 8 1 O 1 6 12 7‘ approved o m\;uo ﬂhlt‘l.i i

astripution © imiteds

-

16: ONE~-WAY BOUNDED CELLULAR ACCEPTORS./
| A . N - =

=
N T
; / "/ Charles R./Dyer /

S " University of MaryTland
Computer Science Center
i ——.__ College Park, MD 20742
g |/ Soektdeind el
| 7 /) i e e e 3 3~ L g S5l L
A o Merirn _rep? : N

\-/I{ // /" _/-‘/ t | ! 7,4—7\ o v / /
ABSTRACT £ '

0PY

The formal language recognition capabilities
of one-dimensional one-way bounded cellular automata
are studied. In particular, their relationships to
real-time two-way bounded cellular acceptors, real-
time iterative acceptors, real-time on-line multitape
Turing acceptors, and one-way multihecad finite ac-
ceptors are investigated. It is shown that the Dyck,
linear, standard, and bracketed context-free languages
are accepted in real-time by one-way bounded cellular

acceptors.
DDC-
eI

s R 0CT 27 1978
for releasey '
| o e ‘ oL T

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknow-
ledged, as is the help of Kathryn Riley in preparing this
paper. The author also wishes to thank Azriel Rosenfeld
for many helpful discussions.

<8 A0]

DOC FILE C

.l;"7;6{22j5 {NJ{ £ F' /

1. Introduction
Cellular automata have been studied as parallel pattern i
recognition devices with one- and two-dimensional input, e.9. in
(1,2,3,4). That work makes it clear that the inherent
parallelism of cellular automata can be exploited to yield
fast recognition algorithms.
In one dimension, a bounded cellular acceptor (BCA) is
a finite length string of identical finite-state machines,

or cells, each connected to its left and right neighbors.

This paper considers a highly restricted variant of the BCA,
the one-way bounded cellular acceptor (OBCA), in which each
cell is connected to its left neighbor only. In the non- f
deterministic case, we show that the classes of languages |
i
accepted by BCA's and OBCA's are the same. On the other i
hand, we show that almost all of the known deterministic
BCA languages are also accepted by deterministic OBCA's,
most without loss in speed. It remains an open question,
however, whether or not these two classes of languages are

identical. When both are of unbounded length, it is known

that they are equivalent in acceptance power [S5].

The notion of a one-way parallel automaton was apparently

first introduced by Hennie [6]). His unilateral sequential

iterative systems are somewhat similar to the ORCA's defined ° Secﬂna
Section D !

here, if one introduces a unit delay between each two 0 |

e —

adjacent cells. Cole's [7] iterative automata have a]

" ——
DISTRECTIR/AVAL S CoDES
[Dist. o\l ond - or SOCCIAL |

specially designated input/output cell for sequentially
receiving and generating sequences of states, and there-
fore also are related in some respects to OBCA's, but they
are basically two-way. One-way sequential automata have
also been studied; for example, one-way multihead finite
automata [8) and on-line multitape Turing machines [9].
One-way bounded cellular acceptors will be shown to accept
languages not accepted by any of the three previously
mentioned classes of automata when restricted to real-time
computations.

In two dimensions, a bounded cellular array acceptor is
a rectangular array of identical finite-state machines, each
connected to its four nearest neighbors. The analog of
OBCA in two-dimensions consists of restricting the neigh-
borhood to the upper and left neighbor cells only; this
defines a two-way BCA on a rectangular tape. Hennie [6] has
considered such an analog for his iterative systems. Inoue
and Nakamura [10) have studied a restricted type of two-way
BCA in which cells do not make transitions at every time
step; rather, a transition "wave" passes once diagonally
across the array. The work of Rosenfeld and Milgram (1l1]
on one-way parallel/sequential array automata also investi-
gates the effects of restricted information flow on the
acceptance of two-dimensional languages. In Section 5 we
briefly consider this restricted type of cellular array

acceptor.

2. Definitions

A one-way cellular automaton, K, is a one-dimensional

cellular automaton in which the neighborhood of a cell
consists of itself and its left neighbor only. Formally,

K is defined by specifying a pair C = (Q,8), where Q is the
finite, nonempty state set, and 6:02*20 (or »Q in the det-
erministic case) is the transition function. A copy of C
is assigned to each integer point on the real line; the
copy at point i is called cell i. The transition function
for cell i maps the current states of cells i and i-l into
the set of possible new states of cell i. A step of comp-
utation consists of a state transformation of each cell.

A configuration is a mapping from the integers into Q
specifying the states of all the cells. The configuration
prior to the first step is called the initial configuration.

A one-way bounded cellular acceptor (OBCA in the deter-

ministic case, NOBCA in the nondeterministic case) is a
4-tuple M = (K,QI,QA,#), where K is a one-way cellular auto-
maton defined by the pair (Q,d); QI&Q is a set of initial
states; QALQ is a set of accepting states; and #tQI is a
special boundary state. The transition function is restricted
so that §(p,q) = (#} iff. p = #, for arbitrary q€Q. M accepts
a string at(QI-{O})*if M has initial configuration 08",

and after some number of steps M's rightmost non-# cell,

the accept cell, enters a state in QA‘ The set of strings

i 4

accepted by M defines its language, L. If for any string o
of length n M can determine whether o¢L within n steps, then
we say M accepts L in real time. f
Notice that the accept cell is defined in terms of jts
right neighbor, while the neighborhood of a cell includes only
the left neighbor. Consequently, no cell can know whether it
is the accept cell, and so every cell must act as though it
might be. To define the acceptor so that the accept cell is
aware of its special status would require differentiation of
cell types. While this would clearly not affact the accept-
ance power of OBCA's, it detracts from the structural regul-
arity which characterizes cellular automata. We will there-
fore assume the presence of a controller for M, which speci-
fies an initial configuration and then observes the succession
of states of the accept cell only. If that cell ever enters
an accept state, then the controller halts the operation of
M and declares acceptance of the input string. Note that
nonaccept cells may enter accept states during a computation,
but this in no way affects the acceptance of the string by M.
These definitions are one-way analogs of the well-known

two-way bounded cellular acceptor (BCA) (2]. In the two-way

case, a cell's neighborhood includes both its left and right
nearest neighbor cells, so that the transition function maps

triples of states into sets of states (or states, in the

deterministic case).

Analogously, we can define two-way and four-way bounded

cellular acceptors on rectangular input tapes. Briefly, in

a cellular array automaton, K, a cell C is assigned to each

point in two-dimensional integer space, where C is a pair
(Q,8); Q is the state set and § is the transition function.
For a two-way ccllular array automaton, 6 maps triples of
states into sets of states or states, according to whether

C is nondeterministic or deterministic, respectively. Given
a cell at integer point (i,j), 6 is a function of the states
of the cells at locations (i,j), (i,3-1), and (i-1,3j). This
implies that the accept cell must be the bottom-right cell,
rather than the upper-left [1] or upper-right [3] cell.

This choice was made for greater compatibility with other

definitions of two-way automata [6,10]. A two-way bounded

cellular array acceptor is a quadruple M = (K.QI,QA.#), where
K is a two-way cellular array automaton, and QI, QA and # are
as defined earlier. Similarly, by making the straightforward
changes in § to include all four neighbors, we define a

four-way bounded cellular array acceptor.

The presentation'of OBCA algorithms here is somewhat
informal, using the well established techniques of space-
time diagrams (see, e.g., [(2,7)), registers or channels [7],
and propagating pulses [2]. A g-cell is a cell in state g
in the initial configuration. Cell i is the ith cell from

the left end, lsisn. Cell 1 is the left boundary cell, i.e.,

the unique non-# cell with left neighbor in the boundary state
#. A g-pulse propagating rightward at l/k speed represents a
flow of information (the state q) through a designated
register in each cell at the rate of one cell per k time
steps. That is, if a cell's left neighbor's pulse-register

is filled at time t, then the current cell copies the contents
of that register into its own pulse-register at time t+k.

In a space-time diagram this is shown by a line of slope -k.

A pulse is said to meet or hit cell i when its pulse-register

first becomes nonempty.

ey

3. Language recognition capability

In this section we investigate the acceptance power of
one~way BCA's. First, it is shown that the class of non-
deterministic OBCA languages is equivalent to the class of

context~sensitive languages. Next, we present OBCA algorithms

for accepting languages such as (anb"|nzl}. palindromes, and

{wwlwer*}.

Of particular interest is the class of real-time OBCA
languages. We show that almost all of the known real-time
BCA languages can also be accepted in real time by OBCA's.

It is an open question whether or not this restricted variant
of BCA's can accept all of the real-time BCA languages.

Although we have not been able to show that deterministic
OBCA's can accept all of the context-sensitive (or even the
deterministic context-free) languages, we will show that the
Dyck, linear, standard, and bracketed context-free languages
are all real-time OBCA languages. The next section compares
OBCA's with iterative acceptors, one-way multihead finite
acceptors, and on-line multitape Turing acceptors.

3.1. Nondeterministic one-way bounded cellular acceptors

Theorem 3.1. A nondeterministic one-way bounded cellular
acceptor (NOBCA) can simulate a two-way bounded cellular
acceptor (BCA).

Proof: Given BCA A, we construct NOBCA B as follows.

At each time step the left boundary cell of B initiates a

rightward pulse, signaling each cell to simulate the next
step of the corresponding cell in A. That is, at time step
t>k, cell k in B nondeterministically guesses the state of
cell k in A at time t-k.

At the same time that the kth pulse is triggering the
kth simulation step, it also checks the legality of this

step using a one cell delay. To do this each cell stores

a state pair recording its last two nondeterministically
chosen states in the simulation. The kth pulse remembers
the three pairs of states of the last three cells it has
passed, so it can deterministically compute whether or not
the state of the previous cell at time k is a legal successor
given the states of the three cells at time k-1.
In addition, since a cell cannot know if it is the
accept cell, it must also act as the rightmost non-# cell.
This means that each cell needs two registers: the first
stores a state pair as described above, so that the cell can
simulate a non-accept cell; the second register stores a
single state deterministically computed as the next state of
the cell given its current state (in register 2) and its left
neighbor's current state .(in that cell's register 1), and
assuming that its right neighbor is in the boundary state.
Thus at each time step a cell checks the legality of the f
current simulation step for the cells to its left, nondeter- '

ministically guesses its own state at this step in case it

v R

is not rightmost, and deterministically computes its state

A vty e A P b 2

in case it is rightmost. Hence the kth pulse computes the | &
kth simulation step and verifies its legality in real time.

If A is nondeterministic then each cell in B must store a

e

pair of sets of states in register 1 and a set of states

f 3 in register 2, but otherwise the simulation is analogous.//
Note that if B were unbounded it could deterministically

§ simulate A, where the successive simulated configurations

j would be steadily displaced from the location of the (bounded)
initial configuration (S].

Theorem 3.2. The class of nondeterministic OBCA

languages is equivalent to the class of context-sensitive
languages. '

Proof: A nondeterministic BCA can easily simulate an 7
NOBCA by ignoring its right neighbor connections; thus the

theorem immediately follows from Theorem 3.1 and the well-

known equivalence of the nondeterministic BCA languages to

the context-sensitive languages [2].//

We now investigate the language recognition capabilities

of deterministic OBCA's. From Theorem 3.2 it follows that
the OBCA languages are a subclass of the context-sensitive
languages. On the other hand, the OBCA languages contain the
regular sets, since any regular set can be recognized by a

one-way, deterministic finite acceptor. The remainder of

this section further delimits the acceptance power of OBCA's.

|
|

Remarkably, we have yet to show that OBCA's are strictly
weaker than BCA's. Of special interest is the class of
languages accepted by OBCA's in real time. The relation

of this class to other real-time definable language classes
will be studied in Section 4.

3.2. Examples of OBCA languages

Example 3.1. The set of strings over alphabet {0,1}

whose center symbol is a 1 1is a real-time OBCA language.
Proof: The left boundary cell initiates a pulse at time

1 which is sent rightward at unit speed. Also starting at
time step 1, the input string is shifted right at 1/2 unit
speed. As illustrated by the space-time diagram of Figure
3.1, at time t=k the pulse hits cell k, which is currently
storing a copy of the input state of cell | (k+1l)/2). 1If
this state is a 1 the cel.l accepts.

Example 3.2. L = {a™"|n=1} is a real-time OBCA

language.

Proof: At time step 1 each cell permanently stores a
copy of its input state, with cell 1 specially marking its
state as leftmost. If celi 1 has input state b, this cell
enters a tailure state which is propagated to the right.
Beginning at step 2, a's shift right at unit speed as long as
they cross first only a-cells and then only c-cells. If this
is not the form of the stored states, then a failure pulse is

propagated rightward. An a-pulse stops moving when it meets

Figure 3.1. Recognizer for strings whose center
symbol is a 1. A dot means the cell
has entered an accepting state.

a b-cell, at which time it changes to a c¢-cell. If the
leftmost a is ever cancelled by a b-cell, then this cell
accepts and also propagates a failure pulse to its right

in case it is not the right boundary cell (i.e., the accept
cell). Figure 3.2 shows the space-~time diagram for a simple
example.//

Example 3.3. The Dyck languages are real-time OBCA
languages.

Proof: Let D be the Dyck language on alphabet
lal,az,...,an,bl,bz,...,bnl. where a, is the left paren-
thesis corresponding to right parenthesis bi' If the left
boundary cell contains a right parenthesis, this cell enters
a failure state which is propagated to the right. Otherwise,
the leftmost left parenthesis is specially marked. In addi-
tion, each ai-cell with a bi-cell neighbor is specially marked.
Each cell stores its input state and then left parentheses are
propagated to the right at unit speed. A left parenthesis ay
continues moving right as long as the cells it crosses are
either ai-cells or ci—cells. When a, meets a cell with input

state b if k= then this.cell's state is changed to ¢,

¢’
and the ag-pulse stops moving rightward; otherwise, a failure
state is propagated to the right. If the leftmost left
parenthesis is ever cancelled at a cell, then this cell

accepts. An accepting state is then propagated to cells cancelled
by a specially marked left parenthesis as long as the pulse has

not encountered an intermediate cell in the failure state.

Figure 3.3 shows the space-time diagram for a simple example.//

Figure 3.2.

Recognizer for {a"b" |nz1}.

- 4
--q\-’

e o e P e i S
e oo ol e e A

Figure 3.3. Dyck language recognizer. Hollow
circles indicate provisional accepting
\ cells, filled circles indicate cell
\ has entered an accepting state.

Example 3.4, L = {albjckli=j or j=k} is a real-time

OBCA language.

Proof: Similar to the proof of Example 3.2. The left

boundary cell starts a pulse which checks in real time that
the input is of the form #a*b*c*; if it is not, a failure
state is entered. Simultaneously, both a's and b's shift
rightward at unit speed with the (#,a) and (a,b) boundary
cells specially marked. If the left boundary a-cell is
cancelled by cell i, that cell enters an accept state. We
propagate acceptance to the right (since the input is of the
form Qakbkt*) as follows: if cell j is in an accept state]
and cell j+l1 is a c-cell, then cell j+l1 enters an accept
state.

Similarly, if an (a,b) boundary pulse is cancelled by

c-cell i, and cell i has input of the form #a*b*c* (it must ¥

wait until the left boundary pulse arrives for this inform-

ation), then it enters an accepting state, since {#a*b*c*}N

{z*ab®cKlcn. 1n addition, if cell i is not also accepted
because it has the form #akbki*, then a failure state is
propagated to all cells to the right of cell i.//

In a similar manner, it can be shown that the context-
sensitive language {anbncnlnzl} is a real-time OBCA language.
The details are left to the reader.

Example 3.5. The set of palindromes over alphabet I is

a real-time OBCA language.

Proof: Each cell permanently stores its input state

and then beginning at time step 1 the input string is shifted
rightward at unit speed. At the end of time step 1 cell i
compares its input state with the state currently propagating
through it. If they are equal, then the substring from cell
i-1 to cell i is a palindrome, and cell i remembers this fact.
At the end of time step 3 cell i again compares its input
state with its current propagating state, originally from
cell i-3. 1If these states are equal and if cell i-1l indi-
cates that the substring between i and i-3 (i.e., cells i-1l
and i-2) is a palindrome, then cell i remembers the fact. By
induction, at the end of time step 2k+l cell i (i22k+l)
checks whether or not the input substring for the 2k+2 cells
from cell i-2k-1 to cell i is a palindrome by comparing the
input states from cells i and i-2k-1 and knowing (from cell
i-1) whether or not the substring between cells i-1l and i-2k
is a palindrome. Similarly, at the end of each even time
step t=2k, we can check whether or not the input substring
for the 2k+1 cells from cell i-2k to cell i is a palindrome.
Figure 3.4 illustrates the.algérithm.

Simultaneously, a pulse originating from the left boundary
cell at time 1 is propagated to the right at unit speed.
This pulse hits cell i at time step i, just after the cell
has determined whether or not the input string from cell 1

to cell i is a palindrome (this computation was completed at

B T IR~

Figure 3.4. Palindrome recognizer. Dots (crosses)

indicate the comparisons for determining
whether or not the leftmost ten (eleven)
symbols constitute a palindrome.

=5

T

the end of step i-1). Hence, at the end of step i cell i
enters an accept or reject state, as appropriate.//

Example 3.6. L = hmyxlxez*,mez*} is a real-time OBCA

language.

Proof: Same as the proof of Example 3.5, except that
acceptance by cell i, indicating that some prefix is a
palindrome, is propagated to all cells to the right of i.//

Example 3.7. L = {xmleer*,wEZ*} is a real-time OBCA

language.

Proof: Again, the proof is only a slight modification
of the proof of Example 3.5. 1In this case, cell i permanently
enters an accept state if it ever determines that some sub-
string with rightmost cell i is a palindrome (recall that at
the end of time t cell i knows whether or not the input
string from cell i-t to cell i is a palindrome). Acceptance
by a cell does not otherwise alter the computation of that
cell, though, so that in case the cell is not the accept
cell it will continue to act as a "middle” cell.//

Example 3.8. L = {a"|n is prime} is an OBCA language.

Proof: Hennie [6, pp. 132-139] describes an unstable
unilateral sequential iterative system in which each cell
outputs a 1 iff. the index of that cell is a prime. That
algorithm is readily adapted to accept L on an OBCA in

O(nz) time.//

Hennie notes that the acceptance time can be reduced
to O(n log n) by making use of a binary rather than unary
representation of integers. It is an open question whether
or not an OBCA can accept L in real time.

Example 3.9. L = {ww|w€I*} is an OBCA language.

Proof: Each cell contains six registers A,R,S,T,,T,
and X. At the beginning of time step 1 the left boundary
state marks itself uniquely, each cell stores a permanent
copy of its input state in its A~register, and an S-pulse
begins moving right at unit speed through S-registers.
When the S-pulse arrives at a cell c, ¢ simultaneously
copies its left neighbor's A-register into c's T-register.
At subsequent time steps c copies the contents of its
Tl-register into its Tz-reqister, and then copies its left
neighbor's Tz-register into its own Tl-register. Cell ¢
stops copying after it stores the marked left boundary
state in its Tz-register. Thus, beginning at time step kK,
cell k reads at unit speed the input states from cells
k=1 through 1, storing each state for two steps before
passing it on to the right in "bucket-brigade" fashion.

At time step 2 an R-pulse begins moving rightward at
2/3 unit speed from cell 2, i.e., the sequence of cells f
whose R-registers are marked starting at the beginning of i

time step 3 is: 3,4,4,5,6,6,7,8,8,... Starting at the

next time step after the R-pulse arrives at a cell, the

cell begins making comparisons of its own irput state with

the state stored in its T,-register. Comparisons continue

1
at each step until the marked left boundary state is com-

pared. Under these conditions, it is easily verified that
cell k's T,-register contains the input state of cell k-t

at the beginning of time step k+t-1, and the R-pulse

arrives at the beginning of time step [3k/21-2; hence it .

follows that cell k compares its own input state with the
input states from cells [k/2]1 through 1 at time steps
f3k/21-1 through 2k-2, respectively. ?
If k is odd, then cell k is easily constructed so that
it never enters an accept state, since only strings of even
length are contained in L. If k is even, then the compari-
sons that must be made in order to determine whether or not
the input up to cell k is in L are Ak:Ak/z'Ak-l:A(k/z)-l'""
‘Nk/2)+1:AIWhere Ai 1s the input state to cell i (stored in
its A-register). But these are exactly the tests made at
cells k,...,(k/2)+1 at time steps (3k/2)-1, (3k/2)-2,...,k,
respectively. When cell (k/2¢1 makes its own final compari-
son, A(k/2)+1:A1 at time step k, it initializes a logical
variable X (i.e., its X-register) to the truth value of
This logical variable is then passed to the

Ak/2)+17M)e
right at unit speed, each subsequent cell "ANDing" into X

the result of its own comparison at that step. Thus when

|
E cell k makes its first comparison Ay :A, ., at time (3k/2)-1,

it also has sufficient information about all of the other
(k/2)-1 comparisons that are necessary for cell k to accept
or reject its input.

Since cell j may be the ((k/2)+l)st cell for cell 2j-2
to its right, each cell must initialize its X-register with
the result of its own final comparison, Aj:Al. During the
steps between the first and last comparison, each cell just
copies the contents of its left neighbor's X-register into
its own X-register, and then ANDs in the truth value of the
equality of its Tl—register contents with its input state.
Thus each cell accepts or rejects its input string within
l% times real time. Figure 3.5 illustrates the space-time

diagram for this algorithm.//

3.3. OBCA's and context-free languages

It is an open problem whether or not the context-free
languages are accepted by OBCA's. Example 3.3 showed that
the Dyck languages are real-time OBCA languages. The next
two theorems show that two other important classes of context-
free languages are accepted in real time.

Theorem 3.3. The linear context-free languages are

real-time OBCA languages.
Proof: Smith (12] has shown how a BCA restricted to use
an OBCA neighborhood can accept this class of languages.//

A bracketed context-free language consists of all the

structural descriptions of the strings in a context-free

| Figure 3.5.

Z,

-— e - - - - -

— — ———— —— —— — o — —

S-pulse

\

\\R—pulse

Recognizer for {mmlwti'}. Dots indicate
the comparisons for determining whether
or not the string up to cell 10 is in
the language.

language. Given a context-free grammar G we construct its
associated bracketed context-free grammar by inserting indexed
brackets around the right-hand sides of G's production rules,
That is, if {»w is the ith production in G, then the ith
production in G' is C*[iw]i, where [i and]i are new symbols
added to G's vocabulary. The language generated by G' is a
bracketed context-free language. This class of languages was
introduced in [13] for the purpose of studying the structural
descriptions of strings generated by transformation:l grammars.
Their relation to marker automata is studied in [14]. We now
show that this important subclass of the context-free languages
is accepted by OBCA's.

Theorem 3.4. The bracketed context-free languages are

real-time OBCA languages.

Proof: Each bracketed language is generated by a bracketed
grammar, G, which has a finite number of productions, each with
a finite length right-hand side. Consequently we can construct
an OBCA which checks the correctness of the application of the
production rules, since at most a fixed, finite number of
terminal symbols or‘braékets of depth d+1 can occur between
matched brackets of depth d. In addition, since the brackets
themselves define a Dyck language, we can use the algorithm
described in Example 3.3 to check the correctness . the

labelled brackets.

More specifically, each cell has two registers, A and B.

During time step 1 each cell stores a copy of its input
symbol in its A-register and, if it is a left bracket, stores
a copy of the righthand side of the production rule associated
with the bracket in its B-register. That is, if a cell con-
tains left bracket [, and the ith production rule is Ei*[iw]i,
then the cell's B-register contains the bounded length string
m]i. In addition, if cell 1 contains left bracket [i and the
left-hand side of production i is the start symbol, then its
B-register is specifically flagged as the start rule; other-
wise cell 1 sends a failure-state pulse rightward.
At subsequent time steps each cell copies the contents of
its left neighbor's B-register into its own B-register and,
if after this copy operation a cell's A- and B-registers are
nonempty, does the following: If the leftmost symbol in the
B-register matches the symbol in the A-~-register, then empty
the A-register and delete the leftmost symbol in the B-register.
(Nonterminal o matches left bracket [i iE &i = g.) 1f, in
addition, the B-register contained the start rule but is now
empty, then enter an accept state and propagate failure to
any cells to the right. Otherwise, the symbols didn't match,
indicating that a rule was not applied correctly, so enter a
failure state and propagate failure to all cells to the right.
This process generates, for each rule application, the rule's
right-hand side (except for the [). Each symbol generated is

matched against a single symbol in the input string. To show

that the rule checking procedure is correct, consider the
application of a rule of the form o»[ronlrlnz...nmrm],
where riez*, niev-(EUZLUZR). Then that portion of an input
string which contains an application of this rule must be

of the form
T
[Fot,

where {n. means that this symbol may be any one of a finite
i
set of left brackets which are part of rules with left-hand

ST IR T RO, SO T T
1 Mo By Ba D D]

side nonterminal n;. and the dashes replace all symbols
associated with other (nested) rule applications.

Since all rules are checked in parallel, we are
guaranteed that the checking of all nested rules' term-
inal symbols and right brackets will be completed before
the current rule is considered at such cells. Consequently,
the contents of the A~registers that the left bracket finds
as it moves right will be

To{nlb...MTl{ B...Bry.. . BB,

| m
where P indicates an empty register. Ignoring the P's, this

is just the string initially stored by the left bracket cell.//

4. Relationship with other types of automata

This section studies the relationship of OBCA's to other
types of automata. In particular, we show that there exist
real~time OBCA languages not accepted by real-time iterative
acceptors, real-time on-line multitape Turing acceptors, or
one-way multihead finite acceptors. Conversely, it is not
known whether languages exist that are accepted by those
types of acceptors but not by OBCA's.

4.1. Iterative acceptors

An iterative acceptor is a two-way cellular acceptor with

cell 1 augmented with an external input and an external output.
The initial configuration of an iterative acceptor has every
cell in a distinguished quiescent state. Beginning at time
step 1 a sequence of input states is applied to the external
input line. If the state observed at the external output at
the end of some time step is an accept state, then we say

that the input sequence of states has been accepted. See

{7] for a formal definition.

Theorem 4.1. There is a context-free language, not ac-

cepted in real-time by any deterministic iterative acceptor,
which is a real-time OBCA language.

Proof: L = {xmlexez*,mez*} was shown in Example 3.7 to
be a real-time OBCA language. Cole [7] has proved that L
cannot be accepted by any real~time deterministic iterative

acceptor.//

4.2. On-line Turing acceptors

An on-line k-tape Turing acceptor (OTA) consists of a

finite control, a one-way read-only input tape, and k two-
way read-write storage tapes. Initially, the storage tapes
are blank, the input tape contains an input string, and the
finite control is positioned over the leftmost input symbol.
At each step the control changes state, each storage tape
head writes a (possibly) new state at the current square and
independently moves left, right, or not at all, and the |
input tape head moves one square to the right. A string of
length n is accepted in real-time by an OTA T if T is in an
accept state after n steps. See, for example, (9,13] for a
formal definition and for previous results.

Theorem 4.2. There is a context-free language, not

accepted in real-time by any deterministic on-line multitape
Turing acceptor, which is a real-time OBCA language.

Proof: Hartmanis and Stearns (9] have proved that the
language L = {yxdy‘xR|x€{0,l}*; y.y'€{A}U{0,1,d}*d} cannot be
accepted in real time by any OTA. We now show how to construct
a real-time OBCA whiéh adcepts L.

The algorithm uses three registers per cell. One stores
a permanent copy of the input state, one shifts the input right
at unit speed, and the third reverses every substring of the
form d{0,1}*d, and compares it with every substring to its
right of the form d4{0,1}*. If a match is found, the rightmost

cell in the right substring enters an accept state.

|
|
|

More specifically, at the beginning of time step 1 each
cell stores a copy of its input state in registers 1 and 2
and blanks out register 3. Then the input string begins
shifting right through register 2's at unit speed. When a
propagating 0 or 1 meets a cell with state d in register 1
it is copied into register 3. This bit now shifts right
at unit speed until it finds a cell that contains in register
3 either a blank or an f. If it contains an f then the
propagating symbol stops. If it is blank and the symbol
matches the symbol in register 1, then we write the symbol
in the register; otherwise the two symbols don't match, so
we write an f in the register. In particular, if the symbols
just matched and the propagating symbol was the left end
symbol of some {0,1}* substring (i.e., its left neighbor is
a d-cell) then the current cell enters an accepting state,
since the entire substring matches in this position.

When a propagating d meets a d-cell, a pulse is started
through register 3's which blanks out all registers up to
the next d-cell. In this way a given input substring can be
matched against each substting'to its left without interference
from prior match attempts. Figure 4.1 illustrates a simple
example.//

4.3. Multihead acceptors

A one~way k-headed finite acceptor consists of a finite

state control, a single read-only input tape, and k one-way

Figure 4.1. Recognizer for {yxdy'xN|x€(0,1}*;y,y'€{A}u{0,1,d}"d).
Vertical lines describe register 3 contents: thin
dash means blank, thick dash means 0 or 1, and
double line means £. A dot indicates the cell
has entered an accepting state.

——-——-—-——d

ety

e ——

{
H
|

|

reading heads. Each head begins on the leftmost square of
the input tape and independently moves to the right under
the direction of the finite state control. In addition, the
control cannot detect the coincidence of the heads. Hence,
the transition function is of the form 6:Qx2k+Qx{0,l}k,
where Q is the set of states, I is the input tape alphabet,
and {0,1} is the set of possible directions of ovement for
each of the heads. See, e.g., [(8,16,17] for earlier results
and formal definitions.

Theorem 4.3. There is a language, not accepted by any

one-way, k-headed finite acceptor, which is accepted by an
OBCA.

Proof: Yao and Rivest {17] have proved that the language

L = (ml*mz*...*mZblmie{O,l}*, W bzl} cannot be

i T Y2p-i+l’
accepted by any one-way, k-headed finite acceptor. We now
sketch how to construct an OBCA which accepts L.

This algorithm combines the methods used in the palin-
drome and {ww} language acceptance algorithms. Briefly, at
time step 1 each cell whose left neighbor is a #- or *-cell
marks itself and then all the w's commence shifting rightward
in bucket-brigade fashion, as described in the proof of {wwl.
When the leftmost (marked) symbol in wy hits a *-cell, it
begins checking whether or not w, = Wipqe also as described

1

in the proof of {wwl. The rightmost cell of wy stores the

+1
result of this comparison. Wy continues shifting right,

e B

Ty

Qe sl 2 i

this time shifting until it finds the second *-cell (i.e.,

third overall). At this time it begins checking whether or
not w; = wy,3- Similarly, Wy continues shifting rightward,
comparing itself with substrings Wi41? Wip3s Wiggrece

The proper combination of these substring comparisons,

which all told test VYizj ij:w21+1 and w2j+l:w2i+2' is as

described in the palindrome algorithm. That is, after the

first comparison, WiEW o g the rightmost cell in Wil

whether or not they were equal. As substring w;_, Passes by

stores

substring Wiy ON its way to make its second test, Wi)30 407

it reads whether or not w, = If w. = W and the

Sl TH R i-1 i+2
wi's in between form a palindrome, then the rightmost symbol
in Wie2 remembers this fact. This process continues, so that
substring Wy is successively compared with substrings Wi_oe
Wi_gqre-e At the completion of the kth test the rightmost
cell of w; is in a "provisional accept state" iff w; = w, 5,
and the mj's in between form a palindrome. 1In particular,
if after the comparison Witwy ., wi's rightmost cell is in a
provisional accept state, then the rightmost cell of Wy
enters an accept state. Since the bucket-brigade moves only
at 2/3 unit speed, L is accepted in 3/2 real time by an OBCA.
Figure 4.2 schematically illustrates the space-time diagram
for this algorithm.//

Various other definitions of multihead finite automata

have been studied, including Sudborough's multihead writing

finite automata [18]) and Shah and Rosenfeld's multicontrol

Ty DN i Ao

=

*

Recognizer for {wlﬁmzﬁ...*mZblwiE{O,l} ,wi-mZb_i+l,bzl}.
A heavy line indicates substrings are being compared.

Figure 4.2.

finite automata [19]. The latter consist of k read-only
heads which act under the control of k independent~and syn-
chronous finite controls. These heads can sense each others'
states only when they are in the same or adjacent positions
on the input tape. Under a one-way restriction, it is easily

seen that such automata are no more powerful than single-

head finite-state automata.

A —

T

5. Further remarks

5.1. Closure properties

Using a two-channel technigque similar to that used by
Cole (7] and Smith (2], it is easily proved that the class
of (real-time) OBCA languages is closed under union, inter-
section, and set difference. As a consequence, the standard
context-free languages are real-time OBCA languages, since
each is the intersection of a Dyck language and a regular set.

The class of (real-time) OBCA languages is also closed
under complementation, since an OBCA M with g states is
periodic within time qn (respectively, n) for input of length
n. That is, if M accepts language L, we can design an OBCA
M' which simulates M, counts up to qn (respectively, n) at
cell n (using the radix q counter per cell technique discussed
in (20]), and accepts iff M has not yet accepted by this
time, so that M' accepts just L.

It is an open problem whether or not the (real-time)
OBCA languages are closed under concatenation. 1In particular,
it is easy to show that if L is a (real-time) OBCA language,
then LI* is a (real-time)-OBCA language. Briefly, if a cell's
left neighbor ever enters an accept state, then it also
accepts. On the contrary, it is not known whether I*L is a
(real-time) OBCA language if L is. In spite of the negative
answers to this question for real-time iterative arrays [7)

and real-time on-line multitape Turing acceptors [15], the

results of Theorems 3.5 and 3.6 suggest an optimistic outlook.
Of course, if we could answer the open question of OBCA
closure under reversal in the affirmative, then closure under
I*L would immediately follow.

5.2. Time Bounds

Trivially, the acceptance of any reasonable language by
an OBCA of length n requires at least n time steps since
otherwise the accept cell cannot know the input state of
the leftmost cell. We have exhibited in Section 3 a wide
variety of languages which are accepted in real time. Only
for the languages related to {ww! and primes were non-real-
time algorithms given. It is of interest, then, to ask
whether all OBCA languages can be accepted in real time.

Of special interest in this regard is the fact that
there cannot exist a speed-up theorem for OBCA's comparable
to those for BCA's (1], cellular arrays (5], and iterative
arrays [7), since the notion of packing information origi-
nally held in several cells into a single cell is impossible
for an OBCA. To show this, suppose that such a packing
algorithm did exist. " Then, in particular, there must be an
algorithm for packing two input states per cell in the right
half of an OBCA. Consider the input state of cell 1. Given
an OBCA of length 2n, cell l's state is packed into cell n+l
as a result of this algorithm. But by definition of an OBCA,
cell (n+l)'s sequence of states can only depend on the states

of cells 1 throu n+l, Therefoie, given any OBCA of length

greater than 2n, the algorithm will also pack cell 1l's
state into cell n+l, which is not the correct packing.
Thus such an algorithm cannot exist.

On the other hand, exponential time is an upper bound
on the acceptance of any OBCA language, since an OBCA of
length n with g states must become periodic within qn
time steps.

5.3. Two-dimensional languages

The pattern recognition capabilities of bounded cellular
array acceptors with the standard four nearest neighbor con-
nection have been studied previously, for example in (1,3,4].
This section briefly considers bounded cellular array acceptors
when the neighborhood of each cell is restricted to two
neighbors only ~-- the cells above and to the left of the given
cell. (Refer to Section 2 for definitions.) In particular,
we are interested in two-way automata which accept their input
arrays in time proportional to the array diameter. That is,
given automaton M accepting language L, if there exists a k
such that M accepts every m by n array in L within k(m+n)

time steps, then we say M accepts L in diameter time.

Let 4BCA (N4BCA) denote a deterministic (nondeterministic)
bounded cellular array acceptor with four neighbors per cell.
Let 2BCA (N2BCA) denote a deterministic (nondeterministic)
bounded cellular array acceptor with the two cell neighborhood

just described.

In the nondeterministic case, it is easily shown using
the techniques in Section 3.1 that N2BCA's accept the same
class of languages accepted by N4BCA's. Briefly, an N2BCA
can simulate an N4BCA as follows. At each time step the
upper-left corner cell in the N2BCA initiates a pulse wave
moving to the right and down at unit speed indicating to
each cell to nondeterministically guess its next set of
states in the N4BCA. At the same time that a pulse insti-
gates the next transition for all cells at distance d from
the upper-left corner, it also checks deterministically the
legality of the set of states chosen at the previous step
by the cells at distance d-1 from the upper-left corner cell.
In addition, each cell acts as a bottom-row, right-column,
and bottom~right corner cell in three other registers. Hence,
the kth pulse initiates the kth simulation step and verifies
its legality in diameter time steps. Since these pulses ori-
ginate from the upper-left corner cell at every time step,
the simulation at any cell is real time after at most a diam-
eter time startup delay.

As in the one-dimensional case, it is an open problem
whether or not the class of languages accepted by 2BCA's is
precisely the class of languages accepted by 4BCA's. However,
two-dimensional analogs of many of the OBCA string languages
in Section 3 can be accepted by 2BCA's in time proportional

to the diameter of the array. For example, the set of square

P ————

—
e e

§
i
f
]

arrays of odd side length having 1 in their center cells is

a diameter~time 2BCA language. The desired automaton is
constructed as follows. At time step 1 the upper-left corner
cell initiates a pulse which moves at unit speed diagonally
across the array, i.e., at odd steps moving down and at even
steps moving right. Simultaneously, at half unit speed the
input is shifted diagonally towards the bottom-right corner.
It is easily verified that at time step t = 4k+1 the pulse

is at cell (2k+1l, 2k+1l), and this cell is currently storing

a copy of the input state at cell (k+1l, k+l). Thus, if the
pulse arrives at a cell on the diagonal when its current
input state is a 1, then the cell enters an accepting state.
Blum and Hewitt [21] have proved that this language cannot be
accepted by any finite-state acceptor.

Qther, more inherently two-dimensional, languages can
also be accepted by 2BCA's. The connectedness language 1is
the set of all rectangular arrays over alphabet {0,l1} such
that any two l-cells, p and g, are connected by a path of
l-cells p = CysCprevesCy = dy where Ci+l is adjacent to ¢,
for all lsi<k. Beyer [1l] has shéwn how a 4BCA can accept
this language. The connectivity transformation used there is
readily modified to work on a 2BCA in diameter time. Similarly,
Beyer's maze predicate [l] can be accepted by a 2BCA.

A language we have yet to show can be accepted by a 2BCA

is the majority predicate, consisting of the set of all

- es—

rectangular arrays over alphabet {0,1} in which there are
more 1l's than 0's. It is known that a 4BCA can accept this
language in diameter time [3,4].

Finally, we leave open for future study the closure
properties of 2BCA languages. Of particular interest are
properties invariant under geometric transformations such

as translation, rotation, and scale change.

6. Concluding remarks

The question of whether or not OBRCA's are strictly
weaker than BCA's remains unanswered. However, the follow-
ing argument suggests an approach to proving that the answer
is in the affirmative. Let L be a function from the posi-
tive integers into the positive integers, let M be a BCA
or an OBCA with a special blank state b&QI. and let L be a
set of strings over the input states QI-{b,Q). Then M accepts

L with L(n) cells, L(n)=2n, provided that

(1) For each string otl of length n, there is a nonnega-
tive integer m such that m+n = L(n) and M eventually
enters an accepting state given the initial configu-
ration #"bMos”™ .

(ii) If M accepts o in the sense of (i), then otl.

Stearns, Hartmanis, and Lewis [22] have shown that for any

tape functions Ll(n) and Lz(n), with Ll(n)zllog nl fully

constructable and ing (Lz(n)/Ll(n)) = 0, there is a set accepted

nso

by an Ll(n)~tape—bounded deterministic Turing machine, but not

accepted by any Lz(n)-tape-bounded deterministic Turing machine.

2

For example, there is a language accepted by an n“-tape-bounded

deterministic Turing machine which is not accepted by any n-tape-

bounded deterministic Turing machine.
Clearly, an n-tape-bounded deterministic Turing machine
can simulate a BCA with n cells. It is also easily shown that

a BCA with n2 cells can accept any language accepted by an

S —

nz-tape-bounded deterministic Turing machine, since it has

enough space to simulate the moves of such a Turing machine.
It follows from these remarks and the result of Stearns
et al. that there is a language accepted by a BCA with n2
cells which is not accepted by any BCA with n cells.

We conjecture that any language accepted by an OBCA

é cells can be accepted by a BCA with n cells. If

with n
this could be proved we could then conclude that there is

a language accepted by a BRCA with n2 cells which cannot be
accepted by any OBCA with n2 cells, i.e., BCA's are stronger

than OBCA's. [

References

ll

» 10.

11‘

12.

13.

W. T. Beyer, Recognition of topological invariants by
iterative arrays, MAC TR-66, Massachusetts Institute of
Technology, October 1969.

A. R. Smith III, Real-time language recognition by one-
dimensional cellular automata, J. Computer Sys. Sci. 6,
1972, 233-253.

. Two-dimensional formal languages and pattern
recognition by cellular automata, IEEE 12th SWAT
Symposium Proceedings, 1971, 144-152.

S. R. Kosaraju, On some open problems in the theory of
cellular automata, IEEE Trans. Computers C-23, 1974,
561-565.

A. R. Smith III, Cellular automata complexity trade-offs,
Info. Control 18, 1971, 466-482.

F. C. Hennie, Iterative Arrays of Logical Circuits,
M.I.T. Press, Cambridge, Mass., 1961.

S. N. Cole, Real-time computation by n-dimensional
iterative arrays of finite-state machines, IEEE Trans.
Computers C-18, 1969, 349-365.

A. L. Rosenberg, On multi-head finite automata, IBM J.
Res. Devel. 10, 1966, 388-394.

J. Hartmanis and R. E. Stearns, On the computational
complexity of algorithms, Trans. Amer. Math. Soc. 117,
1965, 285~306.

K. Inoue and A. Nakamura, Some properties of two-dimen-
sional on-line tessellation acceptors, Info. Sci. 13,
1977, 95-121.

A. Rosenfeld and D. L. Milgram, Parallel/sequential
array automata, Info. Proc. Letters 2, 1973, 43-46.

A. R. Smith III, Cellular automata and formal languages,
IEEE 11th SWAT Symposium Proceedings, 1970, 216-224.

S. Ginsburg and M. A. Harrison, Bracketed context-free
languages, J. Computer Sys. Sci. 1, 1967, 1-23.

e A ot A A S DA A 018 G 405 55 5ok

14,

15,

16.

17.

18.

19.

20.

21.

22,

R. W. Ritchie and F. N. Springsteel, Language recognition
by marking automata, Info. Control 20, 1972, 313-330.

A. R. Rosenberg, Real-time definable languages, J.ACM 14,
1967, 645-662.

D. H. Ibarra and C. E. Kim, On 3-head versus 2-head
finite automata, Acta Info. 4, 1975, 193-200.

A. C. Yao and R. L. Rivest, k+l heads are better than Kk,
J.ACM 25, 1978, 337-340.

I. H. Sudborough, One-way multihead writing finite
automata, Info. Control 30, 1976, 1-20.

A. N. Shah and A. Rosenfeld, Two heads are better than
one, Info. Sci. 10, 1976, 155-158.

C. R. Dyer and A. Rosenfeld, Cellular pyramids for image
analysis, TR-544, Computer Science Center, University of
Maryland, College Park, Md., 1977.

M. Blum and C. Hewitt, Automata on a 2-dimensional tape,
IEEE 8th SWAT Symp. Proc., 1967, 155-160.

R. E. Stearns, J. Hartmanis, and P. M. Lewis II,
Hierarchies of memory limited computations, IEEE 6th
SWAT Symp. Proc., 1965, 179-190.

R R vt .+ S Aol el

Chadic e Bl i

e ’ T R A NN SR R

%

'Ecum?v CLASSIFICATION OF THISRAGEhen Data Entered) PRI
4 READ INSTRUCTIONS
REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSRTR- T78- 1414 .
k /4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED i
Interim
ONE-WAY BOUNDED CELLULAR ACCEPTORS T Tt T T T T
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)
Charles R. Dyer AFOSR 77-3271
4 3. PERFORMING ORGANIZATION NAME AND ADDRESS il 7 T T
. University of Maryland v/
Computer Science Center 61102F 2304/A2
College Park, Maryland 20742
k) 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
July 1978
Air Force Office of Scientific Research/NM 13. NUMBER OF PAGES
Bolling AFB, Washington, DC 20332 46°

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDOULE
E £
i ¢ 16. DISTRIBUTION STATEMENT (of this Report)
. »
Approved for public release; distribution unlimited.
17. DISTRIBUTION ST, AENT (of '+ abstract entered in Block 20, if different from Report)

¢ |
3 i
3 18. SUPPLEMENTARY .. TES ;
| s
4]
E {
: ‘ 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

E

v' \‘ i

- i 20. ABSTRACT (Continue on reverse side If necesaary and identify by dlock number) |
. i he formal language recognition capabilities of one-dimensional one-way
. i

bounded cellular automata are studied. In particular, their relationships to
| real-time two-way bounded cellular acceptors, real-time iterative acceptors,
real-time on-line multitape Turing acceptors, and one-way multihead finite

\ acceptors are investigated. It is shown that the Dyck, linear, standard,
\ and bracketed context-free languages are accepted in real-time by one-way
‘ bounded cellular acceptors. %

DD ,%an'ss 1473 UNCLASSIFIED
; SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

